miércoles, 21 de noviembre de 2012



INSTITUTO DE DIFUSION TECNICA Nº 11
VILLA TEPETITAN MAC, TAB.
MODULO IV:  
ENSAMBLE Y MANTENIMIENTO DE HARDWARE Y SOFTWARE

SUBMODULO I:  
ENSAMBLAR Y CONFIGURAR EQUIPO DE CÓMPUTO
 
CLAVE:  
27ECT0011T

TEMA: 

MEMORIA RAM Y FUENTE DE PODER

NOMBRES DE LA INTEGANTE:

MARIA CONCHITA LOPEZ ROBLES




INTRODUCCION


Almacenes internos en el ordenador. El termino memoria identifica el almacenaje de datos que viene en forma de chips, y el almacenaje de la palabra se utiliza para la memoria que existe en las cintas o los discos. Cada ordenador viene con cierta cantidad de memoria física referida generalmente como memoria principal o RAM. La memoria de acceso aleatotorio llamada generalmente RAM es la memoria principal del sistema, es decir, un espacio que permite almacenar datos temporalmente mientras un programa se está ejecutando. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras la computadora está encendida o no sea reiniciada.
Si disponemos de más capacidad de memoria, podemos tener más programas abiertos a la vez o con grandes volúmenes de datos. Además de la capacidad, también hay que tener en cuenta la velocidad de la memoria si es más rápida, podremos ejecutar programas y mover datos con mayor rapidez (con este ejemplo vemos claramente que la velocidad de trabajo de un ordenador no solo está en el procesador, sino en mas componentes, como la memoria RAM).
La fuente de alimentación (Power supply) es como su nombre lo indica, la encargada de suministrar energía eléctrica a los distintos elementos que componen nuestro sistema informático.
La fuente de poder nos apoyara en el diagnostico y prueba de los diferentes aparatos electrónicos y sus componentes, así mismo para comprenderlos y estudiarlos. Una fuente de poder o de alimentación es un dispositivo que convierte la tension alterna la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos tipos de circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora. Router, etc.)
Básicamente la fuente de poder lo que hace es convertir la corriente alterna (AC) de nuestros hogares, a corriente directa (DC) que necesita nuestro PC. En cambio hoy en día solo presionamos un botón para encender nuestra computadora, y por lo general solo lo usamos con ese fin, porque para apagarla lo hacemos a través del menú de apagado de nuestro sistema.

 
Memoria RAM

 
La memoria principal o RAM (Random Access Memory; Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada. Se le llama RAM porque es posible acceder a cualquier ubicación de ella aleatoria y rápidamente,  es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga.
     
       RAM. Es un dispositivo electrónico que se encarga de almacenar datos e instrucciones de manera temporal, de ahí el término de memoria de tipo volátil ya que pierde los datos almacenados una vez apagado el equipo; pero a cambio tiene una muy alta velocidad para realizar la transmisión de la información.

  

MEMORIAS RAM


Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas en memoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador.

Según su tecnología de fabricación, las RAM pueden ser de dos tipos: 

RAM dinámicas: Es aquella en la que los datos se almacenan en condensadores, que requieren recargarse (refrescarse) periódicamente para mantener el dato.
La ventaja de este tipo de celda es que es muy sencilla, lo que permite construir matrices de memorias muy grandes en un chip, a un costo por bit más bajo que el de las memorias estáticas.
La desventaja es que el condensador de almacenamiento no puede mantenerse cargado más que un periodo de tiempo, y el dato almacenado se pierde si su carga no se refresca periódicamente.

RAM estáticas: abreviatura para la memoria de acceso al azar estática. SRAM es un tipo de memoria que es más rápida y más confiable  que la DRAM más común. El termino se deriva del hecho de no que no necesitan ser restaurados como RAM dinámica.

Tipos de RAM estáticas

  1. SRAM Sincrónica
  2. SRAM Burst
  3. SRAM Pipeline

Formatos de RAM

Se trata de la forma en que se organizan los chips de memoria, del tipo que sean, para que sean conectados a la placa base del ordenador. Son unas placas alargadas con conectores en un extremo; al conjunto se le llama módulo. El número de conectores depende del bus de datos del microprocesador.




ESTRUCTURA LOGICA DE MEMORIA RAM


      Desde las primeras computadoras, la estructura lógica ha sido la siguiente:
  • Memoria base: desde 0 hasta 640 KB (KiloBytes), es en esta zona dónde se almacena la mayoría de los programas que el usuario utiliza.
  • Memoria superior y reservada: de 640 a 1.024 MB (MegaBytes), carga unas estructuras llamadas páginas de intercambio de información y unos bloques de memoria llamados UMB.
  • Memoria expandida: se trata de memoria paginada que se asigna a programas en memoria superior, la cual algunas veces no se utilizaba debido a la configuración del equipo y con este método se puede utilizar.
  • Memoria extendida: de 1.024 MB hasta 4 GB (GigaBytes), se cargan todas las aplicaciones que no caben en la memoria base.
 Antes debido a que los equipos contaban con memoria RAM limitada, existían utilerías que reacomodaban los programas cargados en memoria para optimizar su funcionamiento, inclusive el sistema operativo Microsoft Ms-DOS necesitaba de un controlador especial (himem.sys), para reconocer la memoria extendida, sin él solo reconocía 640 KB aunque hubiera instalados más de 1 MB.


  


TIPOS DE MEMORIA RAM

TIPOS DE RAM

Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque más adelante en este Informe encontrará prácticamente todos los demás tipos.

·         DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
·         Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.



·         Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.





·         EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
·         Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.




·    SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
·         PC100: o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.




·         PC133: o SDRAM de 133 MHz. La más moderna (y recomendable).



SIMMs y DIMMs

Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.




  • SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
  • DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).    

FUNCIONAMIENTO DE LAS MEMORIAS RAM.



La memoria principal o RAM (acrónimo de Random Access Memory, Memoria de Acceso Aleatorio) es donde el ordenador guarda los datos que está utilizando en el momento presente. Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que accederá la información anterior y posterior. Es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga. 
 

¿En qué consiste la memoria?

Los que trabajan en la informática comúnmente emplean el término “memoria” para aludir a la Random Access Memory o RAM. Un ordenador utiliza la memoria para guardar las instrucciones y los datos temporales que se necesitan para ejecutar las tareas. De esta manera, la unidad central de proceso o CPU puede acceder rápidamente a las instrucciones y a los datos guardados en la memoria.
Entonces podemos decir que las memorias son circuitos electrónicos en forma de Chips, capaces de almacenar datos de manera temporal o permanente.





Proceso de carga en la memoria RAM:

Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas en memoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la
memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador.

El inconveniente es de que precisan una electrónica especial para su utilización, la función de esta electrónica es generar el refresco de la memoria. La necesidad de los refrescos de las memorias dinámicas se debe al funcionamiento de las mismas, ya que este se basa en generar durante un tiempo la información que contiene. Transcurrido este lapso, la señal que contenía la célula biestable se va perdiendo. Para que no ocurra está perdida, es necesario que antes que transcurra el tiempo máximo que la memoria puede mantener la señal se realice una lectura del valor que tiene y se recargue la misma.
Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.
Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.


Las memorias poseen la ventaja de contar con una mayor velocidad, mayor capacidad de almacenamiento y un menor consumo. En contra partida presentan el CPU, Memoria y Disco Duro.
Los datos de instrucciones cuando se carga un programa, se carga en memoria. (DMA)

La cantidad de memoria RAM de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobre todo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.

Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.
Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos). 
 

Características de la memoria principal (RAM)

Un sistema de memoria se puede clasificar en función de muy diversas características. Entre ellas podemos destacar las siguientes: localización de la memoria, capacidad, método de acceso y velocidad de acceso. En el caso de la memoria RAM (también denominada memoria principal o primaria) se puede realizar la siguiente clasificación:
Localización: Interna (se encuentra en la placa base)
Capacidad: Hoy en día no es raro encontrar ordenadores PC equipados con 64, 128 ó 256 Mb de memoria RAM.
Método de acceso: La RAM es una memoria de acceso aleatorio. Esto significa que una palabra o byte se puede encontrar de forma directa, sin tener en cuenta los bytes almacenados antes o después de dicha palabra (al contrario que las memorias en cinta, que requieren de un acceso secuencial). Además, la RAM permite el acceso para lectura y escritura de información.
Velocidad de acceso: Actualmente se pueden encontrar sistemas de memoria RAM capaces de realizar transferencias a frecuencias del orden de los Gbps (gigabits por segundo). También es importante anotar que la RAM es una memoria volátil, es decir, requiere de alimentación eléctrica para mantener la información. En otras palabras, la RAM pierde toda la información al desconectar el ordenador.

¿Qué es la memoria RAM, Función, Tipos y Funcionamiento?

FUNCIÓN

Formada por condensadores, que continuamente se están cargando y descargando, hacen posible almacenar los ceros y unos (ausencia y presencia de corriente respectivamente), el tiempo que tarden a volverse a cargar una vez se descargan recibe el nombre de tiempo de refresco; también hay otro tiempo establecido, es el tiempo de acceso.

La memoria de trabajo (normalmente compuesta de chips RAM), hace de cajón o caja al microprocesador dónde guarda los datos que necesita para operar con ellos, así sí la CPU necesita algún dato, el disco duro la busca, y este lo envía a la memoria de trabajo, y éste va a la CPU cuando se la pide. Así pues vemos que es una memoria temporal, puesto que además, al apagar el PC se pierde toda la información que hay.


TIPOS Y FUNCIONAMIENTO


Todas hacen la misma función, pero entre ellas las diferenciamos por el tiempo de acceso y la capacidad, o por el modo como trabajan:

· Registros del microprocesador: Interaccionan continuamente con la CPU, puesto que forman parte de ella, su tiempo de acceso es muy pequeño y una capacidad mínima, normalmente igual a la "palabra" del microprocesador (de 1 a 8 bytes).
· Registros intermedios: Básicamente es un paso intermedio entre dos memorias, un buffer. Tiene capacidad muy pequeña y un tiempo de acceso también muy pequeño.
· Memoria caché: Es la más utilizada por la CPU, y la más importante entre la principal y el microprocesador. Aunque sean de pequeña capacidad, normalmente una fracción de la memoria principal máxima posible, está continuamente intercambiando información tanto con el procesador como con la memoria principal, aunque normalmente se utiliza para guardar la dirección de la memoria principal, en vez de almacenar el archivo entero, así tarda menos a pasar la información hacia la CPU, que si lo hiciera mediante la caché.


Y es por esta razón, que a menudo (excepto modelos especiales como Celeron y Duron), hay dos de memorias caché, dos niveles: Uno en el interior del microprocesador (L1), y el otro entre la principal y la CPU (L2), al exterior del "micro" de más capacidad que la de dentro.

Memoria central o principal: Donde se almacenan programas y datos. La CPU lee y escribe en ella aunque en menos cantidades que en las anteriores. Tiempo de acceso relativamente rápido y gran capacidad.
· Memorias de masas o auxiliares: Son dispositivos exteriores al ordenador o conectados a la placa base por un controlador de bus (disco duro, disquetes, etc.). Dónde se almacenen todos los programas y archivos para un uso posterior. En caso de que la memoria principal sea insuficiente, se hacen servir como apoyo para ésta, denominada "memoria virtual".

Como he mencionado anteriormente, las memorias además de clasificarse por su tiempo de acceso y capacidad, también se pueden clasificar por la forma en que se modifican los datos y la tecnología empleada. Así, encontramos que hay dos grandes grupos:

1. Memorias RAM (Random Acces Memory): Son memorias en las que se puede leer y escribir. Se componen electrónicamente por chips, dónde se pueden subdividir en:

· SRAM (Static RAM): Su célula está basada en un biestable.
· DRAM (Dinamic RAM): Su célula está basada en un pequeño condensador, carga del cual representa la información almacenada. Estas necesitan circuitos adicionales de refresco, puesto que como los condensadores son de baja capacidad, a través de las fugas, la información se podría perder; son de lectura destructiva.


2. Memorias ROM (Read Only Memory): Son memorias en las que sólo se puede leer. Hay de varios tipos:

· ROM: programadas por máscara, la información es grabada en la fábrica y no tiene posible modificación.
· PROM, o ROM: programable una sola vez.
· EPROM (Erasable PROM) o RPROM (Reprogramable ROM): su contenido puede ser borrado mediante rayos ultravioletas, para acto seguido regrabarlas.
· EAROM (Electrically Alterable ROM) o EEROM (Electrically Erasable ROM), son la frontera entre las RAM y las ROM, su contenido puede ser regrabado eléctricamente, se diferencian de las RAM en que no son volátiles.
· Memoria FLASH, denominada así por la velocidad en la que se puede reprogramar (en tan solo segundos), usan el borrado eléctrico.



Tecnologías de memorias RAM: SIMMs y DIMMs:


Se trata de la forma en que se organizan los chips de memoria, del tipo que sean, para que sean conectados a la placa base del ordenador. Son unas placas alargadas con conectores en un extremo; al conjunto se le llama módulo. El número de conectores depende del bus de datos del microprocesador.

1. SIMM de 72 contactos, los más usados en la actualidad. Se fabrican módulos de 4, 8, 16,32 y 64 Mb.
2. SIMM EDO de 72 contactos, muy usados en la actualidad. Existen módulos de 4, 8, 16,32 y 64 Mb.
3. SIMM de 30 contactos, tecnología en desuso, existen adaptadores para aprovecharlas y usar 4 de estos módulos como uno de 72 contactos. Existen de 256 Kb, 512 Kb (raros), 1, 2 (raros), 4, 8 y 16 Mb.
4. SIPP, totalmente obsoletos desde los 386 (estos ya usaban SIMM mayoritariamente).

Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).

Módulos de la memoria RAM

 



Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante el computador por medio del protocolo de comunicación SPD.
La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el modulo al ser instalado en un zócalo apropiado de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación. Los primeros módulos comerciales de memoria eran SIPP de formato propietario, es decir no había un estándar entre distintas marcas. Otros módulos propietarios bastante conocidos fueron los RIMM, ideados por la empresa RAMBUS.
La necesidad de hacer intercambiable los módulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estándares de la industria como los JEDEC.
  • Módulos SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
  • Módulos DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
  • Módulos SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.



Fuente de poder


Cuando se habla de fuente de poder, (o, en ocasiones, de fuente de alimentación y fuente de energía), se hace referencia al sistema que otorga la electricidad imprescindible para alimentar a equipos como ordenadores o computadoras. Generalmente, en las PC de escritorio, la ya citada fuente de poder se localiza en la parte posterior del gabinete y es complementada por un ventilador que impide que el dispositivo se recaliente.
Una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).



 
La fuente de poder, por lo tanto, puede describirse como una fuente de tipo eléctrico que logra transmitir corriente eléctrica por la generación de una diferencia de potencial entre sus bornes. Se desarrolla en base a una fuente ideal, un concepto contemplado por la teoría de circuitos que permite describir y entender el comportamiento de las piezas electrónicas y los circuitos reales.
La fuente de alimentación tiene el propósito de transformar la tensión alterna de la red industrial en una tensión casi continua. Para lograrlo, aprovecha las utilidades de un rectificador, de fusibles y de otros elementos que hacen posible la recepción de la electricidad y permiten regularla, filtrarla y adaptarla a los requerimientos específicos del equipo informático.
Resulta fundamental mantener limpia a la fuente de poder; caso contrario, el polvo acumulado impedirá la salida de aire. Al elevarse la temperatura, la fuente puede sufrir un recalentamiento y quemarse, un inconveniente que la hará dejar de funcionar. Cabe resaltar que los fallos en la fuente de poder pueden perjudicar a otros elementos de la computadora, como el caso de la placa madre o la placa de video.
En concreto podemos determinar que existen dos tipos básicos de fuentes de poder. Una de ellas es la llamada AT (Advanced Technology), que tiene una mayor antigüedad pues data de la década de los años 80, y luego está la ATX (Advanced Technology Extended).
La primera de las citadas se instala en lo que es el gabinete del ordenador y su misión es transformar lo que es la corriente alterna que llega desde lo que es la línea eléctrica en corriente directa. No obstante, también tiene entre sus objetivos el proteger al sistema de las posibles subidas de voltaje o el suministrar a los dispositivos de aquel toda la cantidad de energía que necesiten para funcionar.
Además de fuente AT también es conocida como fuente analógica, fuente de alimentación AT o fuente de encendido mecánico. Su encendido mecánico y su seguridad son sus dos principales señas de identidad.
La ATX, por su parte, podemos decir que es la segunda generación de fuentes para ordenador y en concreto se diseñó para aquellos que estén dotados con microprocesador Intel Pentium MMX.
Las mismas funciones que su antecesora son las que desarrolla dicha fuente de poder que se caracteriza por ser de encendido digital, por contar con un interruptor que se dedica a evitar lo que es el consumo innecesario durante el estado de Stand By y también ofrece la posibilidad de ser perfectamente apto para lo que son los equipos que están dotados con microprocesadores más modernos.


Clasificación

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineal y conmutada. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más complejo y por tanto más susceptible a averías.




Fuentes de alimentación lineales


Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en corriente continua pulsante se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión, que no es más que un sistema de control a lazo cerrado (realimentado - ver figura 3) que en base a la salida del circuito ajusta el elemento regulador de tensión que en su gran mayoría este elemento es un transistor. Este transistor que dependiendo de la tipología de la fuente está siempre polarizado, actúa como resistencia regulable mientras el circuito de control juega con la región activa del transistor para simular mayor o menor resistencia y por consecuencia regulando el voltaje de salida. Este tipo de fuente es menos eficiente en la utilización de la potencia suministrada dado que parte de la energía se transforma en calor motivado al efecto Joule en el elemento regulador (transistor), ya que se comporta como una resistencia variable. A la salida de esta etapa a fin de conseguir una mayor estabilidad en el rizado se encuentra una segunda etapa de filtrado (aunque no obligatoriamente, todo depende de los requerimientos del diseño), esta puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito, para esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.

Esquema de una fuente lineal:



 

Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 kHz típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (inductores y condensadores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son más complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.


Esquema de una fuente conmutada:
 




 Primero el voltaje alterno entra a un transformador (ver imagen siguiente)
En V1 serian la entrada del voltaje alterno y la salida seria V2.



Luego el voltaje V2 pasa por una etapa rectificadora que dejará una señal continua pulsatoria, y por último una etapa de filtro y regulación que dejará una señal continua.

Las fuentes conmutadas tienen una desventaja, que es el ruido.
Es por esto que las fuentes lineales aún son utilizadas en equipos de audio y equipos médicos.



Especificación de la fuente de alimentación


Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.
El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.
Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.
Fuentes de alimentación especiales
Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.
Otro tipo de alimentación de fuentes alternas, catalogadas como especiales son aquellas en donde la frecuencia es variada, manteniendo la amplitud de la tensión logrando un efecto de fuente variable en casos como motores y transformadores de tensión.
 

Transformación.

Este paso es en el que se consigue reducir la tensiòn de entrada a la fuente (220V o 125V) que son los que nos otorga la red eléctrica. Esta parte del proceso de transformación, como bien indica su nombre, se realiza con un transformador en bobina; la salida de este proceso generará de 5 a 12 voltios.

Rectificación.

La corriente que nos ofrece la compañía eléctrica es alterna, esto quiere decir, que sufre de variaciones en su línea de tiempo, "con variaciones nos referimos a variaciones de voltajes" por lo tanto, la tension es variable, no siempre es la misma. Eso lógicamente, no nos podría servir para alimentar a los componentes de una PC, ya que imaginemos que si le estamos suministrando 12 voltios con corriente alterna a un disco duro, lógicamente no funcionará ya que al ser variable, no estaríamos proporcionándole los 12 voltios constantes y reales. Lo que se intenta con esta fase, es pasar de corriente alterna a corriente continua, a través de un componente llamado: puente rectificador o de Graetz.



Filtrado

Ahora si disponemos de corriente continua, que es lo que importaba, no obstante, aun no nos sirve de nada porque no es constante y no nos serviría para alimentar a ningún circuito. Lo que se hace en esta fase de filtrado, es aplanar al máximo la señal, para que no haya oscilaciones, se consigue con uno o varios condensadores, que retienen la corriente y la dejan pasar lentamente para suavizar la señal, así se logra el efecto deseado.

 

Estabilización.

Ya tenemos una señal continua y bastante clara, ahora solo nos falta estabilizarla por completo para que cuando aumenta o descienda la señal de entrada a la fuente, no afecte a la salida de la misma. Esto se consigue con un regulador.



Mapa
Cuando abrimos el gabinete de la PC, podemos encontrarnos con dos tipos de Fuentes de Poder, AT ó ATX:

Fuente De Poder AT

Tiene tres tipos de conectores de salida. El primer tipo, del cual hay dos, son los que alimentan la Tarjeta Madre; los dos tipos restantes, de los cuales hay una cantidad variable, alimentan a los periféricos no enchufados de un slot de la placa madre, como a las unidades de disco duro, CD-ROM, disqueteras, etc. La conexión a la placa madre es a través de dos conectores de 6 pines cada uno, los cuales deben ir enchufados de modo que los cables negros de ambos queden unidos en el centro. En las conexiones de fuentes AT, existía un problema: tenían dos conectores para enchufar en la Tarjeta Madre, dando lugar a equivocaciones y cortocircuitos, ello se soluciona dejando en el centro los cables negros que tienen los conectores. Las fuentes de Poder AT, fueron usadas hasta que apareció el Pentium MMX, es en ese momento cuando ya empezarían a utilizar ATX.


Fuente AT




Cables de voltaje de la fuente de alimentación AT


 

Fuente de Poder ATX.

Es muy similar a la AT, pero tiene una serie de diferencias, tanto en su funcionamiento como en los voltajes entregados a la placa madre. La fuente ATX consta en realidad de dos partes: una fuente principal, que corresponde a la vieja fuente AT con algunos agregados y una auxiliar. La principal diferencia en el funcionamiento se nota en el interruptor de encendido, que en vez de conectar y desconectar la alimentación de 220 VAC, como hace el de la fuente AT, envía una señal a la fuente principal, indicándole que se encienda o apague, permaneciendo siempre encendida la auxiliar, y siempre conectada la alimentación de 220 VAC, permitiendo poder realizar conexiones/desconexiones por software (un ejemplo es la Hibernación en Windows). La conexión a la Tarjeta Madre es a través de un solo conector de 20 pines.
Tabla para clasificar las Fuentes de Poder según su potencia y Gabinete.

  • Sobremesa AT > 150 - 200 W
  • Semitorre > 200 - 300 W
  • Torre > 230 - 250 W
  • Slim > 75 - 100 W
  • Sobremesa ATX > 200 - 250 W                                                                                                                          

    Conectores En Fuente De Poder

     1.- Ventilador: expulsa el aire caliente del interior de la fuente y del      gabinete, para mantener frescos los circuitos.
    2.- Interruptor de seguridad: permite encender la fuente de manera mecánica.
    3.- Conector de alimentación: recibe el cable de corriente desde el enchufe doméstico.
    4.- Selector de voltaje: permite seleccionar el voltaje americano de 127V ó el europeo de 240V.
    5.- Conector SATA: utilizado para alimentar los discos duros y las unidades ópticas tipos SATA.
    6.- Conector de 4 terminales: utilizado para alimentar de manera directa al microprocesador.
    7.- Conector ATX: alimenta de electricidad a la tarjeta principal.
    8.- Conector de 4 terminales IDE: utilizado para alimentar los discos duros y las unidades ópticas.
    9.- Conector de 4 terminales FD: alimenta las disqueteras. 




    Cables de voltaje de la fuente de alimentación ATX



    FUNCIONAMIENTO DE LA FUENTE DE PODER DE 12v

    La fuente de poder es la encargada de suministrar energía a todos los dispositivos internos de la computadora e inclusive, a algunos externos (como el teclado o el mouse). Actualmente existen dos tecnologías en fuentes de poder, las cuales definen las características de cada una: AT y ATX. Básicamente, son el mismo circuito, pero en la fuente ATX tenemos una etapa de control más complicada, además de tener otras tensiones de salida y señales que no se tenía en las fuentes AT. La fuente de poder es un componente fundamental en una PC, ya que suministra la energía eléctrica a cada uno de los componentes del sistema. La función básica de la fuente de poder consiste en convertir el tipo de energía disponible en la toma de corriente de pared a aquellos que sea utilizable por los circuitos de la computadora. La fuente de poder además de generar –5v y -12v estos voltajes casi no se usa para nada. Estos voltajes negativos, se requieren por compatibilidad de sistemas modernos. Los voltajes –5v y –12v son suministrados a la tarjeta madre por al fuente de poder. La señal –5v se dirigen al bus ISA en el pin 25 y no se emplea en ninguna forma en la tarjeta madre.




    DIAGRAMA DE BLOQUES FUENTE DE PODER DIAGRAMA DE FUNCIONAMIENTO FUENTE DE PODER REGULADA 12VANALISIS PASO POR PASO


     
    ETAPAS DE LA FUENTE DE PODER

    TRANSFORMADOR
    El transformador entrega en su secundario una señal con una amplitud menor a la señal de entrada y ésta deberá tener un valor que esté de acorde a la tensión(voltaje)final, de corriente continua, que se desea obtener. Por ejemplo: Si se desea obtener una tensión final en corriente directa de 12Voltios, el secundario del transformador deberá tener una tensión en corriente alterna no menor a los 9 voltios, quedando este valor muy ajustado (recordar que el valor pico el secundario es: Vp = 1.41 x Vrms = 1.41 x 9 = 12.69 Voltios).
    RECTIFICADOR
    - El rectificador convierte la señal anterior en una onda de corriente continua pulsante, y en el caso del diagrama, se utiliza un rectificador de 1/2 onda (elimina la parte negativa de la onda.)
    FILTRO
    - El filtro, formado por uno o más condensadores (capacitores), alisa o aplana la onda anterior eliminando el componente de corriente alterna (c.a.) que entregó el rectificador. Los capacitores se cargan al valor máximo de tensión entregada por el rectificador y se descargan lentamente cuando la señal pulsante del desaparece. Ver el diagrama anterior y proceso de descarga de un condensador
    REGULADOR
    - El regulador recibe la señal proveniente del filtro y entrega una tensión constante sin importar las variaciones en la carga o del voltaje de alimentación.

    DAÑOS EN LA FUENTE DE PODER 

    •El daño más común que se genera en una fuente de poder se da debido al ventilador, pues este en la mayoría de las ocasiones pierde velocidad o sencillamente elimina todo movimiento. Aunque es el más común también debemos tener en cuenta que es el más peligroso pues si el ventilador no funciona se recalentara todo el circuito y los componentes de la fuente de poder. Para detectarlo no encontramos ningún aviso previo, solo podemos hacerlo si dejamos de escuchar el ventilador.

    •Sobre carga de voltaje. Este se genera cuando llega un voltaje muy alto al la fuente de poder causando con esto la pérdida total tanto del circuito como de los componentes. Ocurre generalmente cuando hay pérdida de energía total y luego llega esta con más intensidad. La mejor forma de impedir este tipo de daños es utilizar un estabilizador 

    •Otra falla para que no encienda la fuente de poder se puede deber a que el botón de encendido este dañado o los cables estén desoldados en los conectores del botón. El botón de encendido es solamente un interruptor lógico que le avisa a la tarjeta madre, la cual siempre tiene energía de la fuente de poder, que le mande una señal a la fuente de poder para que despierte totalmente. Puedes revisar el botón de encendido con un Voltímetro para revisar la continuidad.

    La fuente de poder no puede funcionar si los cables de energía no están conectados a la tarjeta madre. Revisa que el conector de energía principal y cualquier otro conector adicional a la tarjeta madre, como el suministro de 12v par sistemas P4, están correctamente conectados. Quita los conectores de energía de los discos duros, drives etc., para asegurarte que no te están provocando un corto circuito. Para que la Fuente de Poder se pueda activar deben de estar conectados los cables de poder a la tarjeta madre. No olvide tener precaución nunca debes de trabajar con la fuente conectada a la corriente eléctrica, ya que siempre está el voltaje de 5v en el pin 9, ya que esta conexión es la que provee electricidad a varios circuitos de la PC que operan a un cuando la PC este apagada, como el encendido por red.


    Enfriamiento de la fuente de alimentación


    La fuente de poder juega un papel importante en el proceso de enfriamiento de la PC.
    La función exacta es sacar  el aire caliente del gabinete.




    El flujo de aire dentro de la PC trabaja como sigue:
     El aire frío entra a través de las rejillas existentes en la parte frontal del gabinete. El aire es calentado por los dispositivos como el procesador, tarjeta de video, chipset, etc.
      Ya que el aire caliente es menos denso que el aire frío, la tendencia natural es que se vaya para arriba, consecuentemente, el aire caliente es retenido  en la parte superior del gabinete.
    El ventilador de enfriamiento de la fuente de poder trabaja como un extractor de aire, jalando el aire caliente de esta área y sacándolo de la PC.
     Fuentes de poder grandes tiene dos o tres ventiladores de enfriamiento.


    CONCLUSION

     La memoria RAM es la que todos conocemos, pues es la memoria de acceso aleatorio o directo; es decir, el tiempo de acceso a una celda de la memoria no depende de la ubicación física de la misma (se tarda el mismo tiempo en acceder a cualquier celda dentro de la memoria). Son llamadas también memorias de lectura y escritura temporales. En este tipo particular de memoria posible leer y escribir a voluntad. La memoria RAM está destinada a contener los programas cambiantes del usuario y los datos que se vayan necesitando durante en la ejecución y reutilizable. La memoria RAM puede leer/escribir sobre si misma por lo que, es la memoria que utilizamos para los programas y aplicaciones que utilizamos día a día.
    Fuente de poder este dispositivo es muy útil ya que sin él la computadora sufrirá altas y bajas de energía y en algunas veces hasta tendría problemas de energía. Pero este dispositivo es muy bueno ya que tiene para controlar el voltaje de la luz eléctrica. Fuente de poder AT, aunque ya casi no se usen fuentes de poder son buenas y hace lo mismo que la fuente de poder solo que este tiene un cambio de conectores. Fuente de poder ATX, este es el dispositivo más actual y más utilizados con un cambio de un conector hacia la luz eléctrica y realiza lo mismo que todas las fuentes de poder. Algunas fuentes tienen un switch para regular el voltaje de 110 a 220 volts, pero otras traen un sensor interno que hace el cambio de voltaje de entrada automáticamente. Todas las fuentes traen un protector de corto circuito, aunque no lo especifiquen debido a que un estándar para las fuentes de hoy en día.



    http://youtu.be/Z2oD455Du3I

    http://es.scribd.com/doc/113635135/Diapo-Del-Disco-Duro